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The temperature dependence of the magnetic properties of FeN clusters �N�24� are determined in the

framework of a functional-integral itinerant-electron theory. For each exchange-field configuration ��, the elec-
tronic structure is calculated by using a realistic d-band Hamiltonian and a real-space recursive expansion of

the local Green’s functions. The statistical averages over all �� are performed by implementing a parallel
tempering exchange Monte Carlo method. Results are given for the average magnetic moment per atom �̄N,
local magnetic moments �l at different atoms l within the cluster, and interatomic spin-correlation functions �lk

as a function of temperature T. A remarkable dependence of �̄N�T� on size and structure is observed that
reflects the importance of the electronic structure to the cluster spin excitations. The correlation between local
atomic environment and finite T magnetism is analyzed in some detail by means of the spin-correlation
functions. The role of bond-length relaxations on the temperature dependent properties is quantified. An
interpretation of our electronic results in terms of Ising or Heisenberg models of localized magnetism reveals
a strong dependence of the effective interatomic exchange couplings Jlk on size and local coordination number,
which defies straightforward transferability and easy generalizations.
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I. INTRODUCTION

The magnetism of small clusters, nanoparticles, and nano-
structures are presently the subject of a very intense research
activity that is driven by strong fundamental and technologi-
cal interests. Transition-metal �TM� clusters in particular
have been investigated by means of a variety of experimental
techniques originally developed in other disciplines such as
molecular, surface, and solid-state physics.1–16 From Stern-
Gerlach �SG� deflection measurements on size-selected clus-
ter beams it has been possible to determine the average mag-
netization per atom �̄N�T� of isolated clusters as a function
of the nozzle temperature T. Remarkable temperature depen-
dences of �̄N have been reported for the different magnetic
3d TMs.4–7,14 For example, in NiN the measurements show
that the magnetization curves are qualitatively similar to the
bulk, except for an important finite-size broadening of the
transition around the cluster “Curie” temperature TC.5,7 Ex-
periments on CoN show that �̄N�T� is about 0.1–0.5�B larger
than the bulk magnetization M�T� for 50�N�600 and
100 K�T�1000 K.5,14 Moreover, at low temperatures,
100 K�T�500 K, the magnetization per atom is found to
increase slightly with T. This is an unusual effect that is not
observed in the solid. In Fe clusters the temperature depen-
dence derived from experiment is qualitatively different from
that of Ni or Co clusters. For 250�N�600 one observes a
rapid, almost linear decrease of �̄N�T� with increasing T �T
�500–600 K�. For T�300 K, �̄N�T� is significantly
smaller than the bulk M�T�, even though at T=0 it was larger
�TC�Fe-bulk�=1043 K�. As the cluster size increases �250
�N�600� �̄N�T� decreases further making the difference
between cluster and bulk magnetizations even larger.5 This
trend is expected to change for larger Fe clusters, although
no experimental evidence seems to be available so far.

From the point of view of theory, mean-field electronic
calculations of ground-state properties have been quite suc-
cessful in predicting a large variety of experimental results
on the magnetic behavior of clusters at low
temperatures.17–24 This includes in particular the determina-
tion of average magnetic moments per atom,18–21 the spin
and orbital contributions,22 the magnetic order within the
cluster, the magnetic anisotropy energies,23 etc. In contrast,
very little is still known about cluster magnetism at finite
temperatures in the framework of an electronic theory.25,26

This is quite remarkable since a correct description of the
temperature dependence of the magnetic properties is crucial
for understanding the physics of the underlying many-body
problem as well as for controlling the behavior of magnetic
clusters in view of technological applications.

One of the major current challenges for theory is to un-
derstand how the stability of the magnetic order within nano-
structures depends on the size and dimensionality of the sys-
tem. Simple trends in the size dependence of finite-
temperature properties—for example, the cluster “Curie”
temperature TC�N�, which measures the energy required to
destroy the spin correlations within the cluster— seem diffi-
cult to infer a priori. On the one side, taking into account the
enhancement of the local magnetic moments �l

0 at T=0 and
of the d-level exchange splittings ��Xl

d =�l↓
d −�l↑

d , one could
expect that TC�N� should be larger and that the ferromagnetic
�FM� order should be more stable in small clusters than in
the bulk. However, on the other side, the local coordination
numbers are smaller at the cluster surface and therefore it
should be energetically easier to disorder the local magnetic
moments in a cluster by flipping or canting them. If the latter
effect dominates, TC�N� should decrease with decreasing N.
In addition, the changes or fluctuations of the cluster struc-
ture may also affect significantly the temperature dependence
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of the magnetization,27,28 in particular for systems such as
FeN and RhN which show a remarkable structural dependence
of the magnetic properties already at T=0.19,29

The strong sensitivity of the d-electron properties on the
local environment of the atoms suggests that reliable conclu-
sions on cluster magnetism at finite T must be based on an
electronic theory that takes into account not only the fluctua-
tions of the magnetic degrees of freedom but also the itiner-
ant character of the d states. In particular one would like that
the theoretical description of finite T properties recovers
properly the ground-state limit and its well-known diversity
of behaviors as a function of size, structure, bond length, etc.
Only in this way one may hope to be able to tackle more
complex phenomena such as the temperature dependence of
orbital moments and magnetic anisotropy. Simple localized-
spin models, for example, based on the Heisenberg or Ising
model, are not expected to be very predictive, at least until
they incorporate the electronic effects responsible for the size
dependence of the local magnetic moments and of their ex-
change couplings. In fact, previous studies of itinerant mag-
netism in clusters, films, and surfaces have already shown
that the effective exchange interactions Jlm between nearest-
neighbor �NN� moments �l and �m depend quite strongly on
the local environment of atoms l and m.25,30,31 It is one of the
goals of this paper to present a functional-integral theory of
cluster magnetism that incorporates the environment depen-
dence of the electronic structure of itinerant d electrons as
well as the temperature-induced fluctuations of the spin de-
grees of freedom. As a first application we perform extensive
Monte Carlo �MC� simulations of the finite-temperature
magnetic properties of FeN clusters in order to reveal their
dependence on size, structure, and interatomic distances. Al-
though the sizes considered here are relatively small �N
�24�, qualitative comparisons with cluster experiments, as
well as with thin-film and bulk calculations, will be at-
tempted whenever possible.

The remainder of the paper is organized as follows. Sec-
tion II presents the theoretical background starting from a
realistic d-band many-body Hamiltonian and deriving the ex-
pressions for the relevant observable properties by using a
functional-integral approach to electron correlations and spin
fluctuations. The model extends Hubbard and Hasegawa’s
bulk theory of itinerant magnetism32–34 in two important re-
spects. First, it incorporates the local environment depen-
dence of the electronic structure, which is central to
nanostructures,35 and, second, it takes into account the col-
lective fluctuations of all the local magnetic moments in the
cluster, thus completely removing any of the usual single-site
approximations. This is physically important when the size
of the cluster is comparable to or smaller than the extent of
short-range magnetic correlations.36 In fact, in this case the
temperature dependence of the cluster magnetization is con-
ditioned by the stability of short-range magnetic order which,
at least in the bulk, is known to involve a higher energy scale
than TC. In Sec. III the results of our simulation on Fe clus-
ters are presented and discussed. These concern the tempera-
ture dependence of the average magnetization per atom, local
magnetic moments, and spin-correlation functions. Particular
emphasis is given to analyzing the local environment depen-
dence of these properties as a function of size, structure, and

interatomic distances. Finally, Sec. IV summarizes the main
conclusions, discusses some limitations, and points out some
interesting future extensions.

II. THEORY

The magnetic properties of TM clusters at finite tempera-
tures are investigated in the framework of a realistic d-band
Hamiltonian,19

Ĥ = Ĥ0 + ĤI. �1�

The first term

Ĥ0 = �
l,	,


�l
0n̂l	
 + �

l�k

	,�,


tlk
	�ĉl	


† ĉk�
 �2�

describes the single-particle electronic structure of the va-
lence d electrons in the tight-binding approximation.37 The
contribution of s and p electrons is neglected for simplicity,
since they are expected to affect both spin directions essen-
tially in the same way. As usual, ĉl	


† �ĉl	
� refers to the cre-
ation �annihilation� operator of an electron with spin 
 at the
orbital 	 of atom l �	�xy, yz, zx, x2−y2, and 3z2−r2� and
n̂l	
= ĉl	


† ĉl	
 is the corresponding number operator. �l
0

stands for the bare d-orbital energy of the isolated atom and
tlk
	� for the hopping integrals between atoms l and k. The

second term,

ĤI =
1

2 �
l,	,�


,
�

�U

�n̂l	
n̂l�
�, �3�

approximates the interactions among the electrons by an
intra-atomic Hubbard-type model, where U

� refers to the
Coulomb repulsion between electrons of spin 
 and 
�. The
prime in the summation indicates that the terms with 	=�
and 
=
� are excluded. U↑↓=U↓↑=F�0� is the average direct
Coulomb integral and U↑↑=U↓↓=U↑↓−J, where J= �F�2�

+F�4�� /14 is the average exchange integral. The F�i� with i
=0,2, stand for the radial d-electron Coulomb integrals al-
lowed by atomic symmetry.38 These are obtained by taking
the ratios F�0� /F�2� and F�4� /F�2� from atomic calculations39

and by fitting the value F�2� to reproduce the bulk Fe spin
moment at zero temperature. For simplicity we neglect in
Eqs. �2� and �3� the dependence of the d-level energies and
Coulomb integrals on the orbital 	, retaining the dominant
spin dependence due to exchange. Notice that Eq. �3� does
not respect spin-rotational symmetry, since the exchange

terms of the form Ĥxy =−�l,	��J	��Ŝl	
− Ŝl�

+ + Ŝl	
+ Ŝl�

− � have been
dropped �see also Eq. �4��.40 Nevertheless, this is not ex-
pected to be a serious limitation in the present work, since
we are interested in studying the effects of spin fluctuations
on broken-symmetry FM ground states.

A. Partition function and derived properties

The finite-temperature magnetic properties of clusters are

derived from the canonical partition function Q=exp�−�Ĥ�,
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where Ĥ stands for the many-body Hamiltonian given by
Eqs. �1�–�3� and �=1 /kBT. In the case of isolated clusters
the temperature T refers to that of the cluster source that
defines the macroscopic thermal bath with which the small
clusters are in equilibrium before expansion. Thermal aver-
age refers then to the ensemble of clusters in the beam. For
deposited clusters the temperature is defined by the support.
Keeping the number of atoms N and the number of electrons
nd fixed �canonical ensemble� corresponds to the experimen-
tal situation found in charge and size-selected beams or at
inert �insulating� supports.

The partition function is solved by extending the
functional-integral formalism developed by Hubbard and
Hasegawa for periodic solids32–34 to the case of finite sys-
tems with arbitrary symmetry.25,35 To this aim we rewrite the

many-body interaction ĤI as

ĤI = �
l
	U

2
N̂l

2 − JŜlz
2
 , �4�

where N̂l=�	
n̂l	
 is the number operator at atom l, Ŝlz
= �1 /2��	�n̂l	↑− n̂l	↓� is the z component of the local spin
operator, and U= �U↑↓+U↑↑� /2. Note that Eq. �4� includes
the self-interaction terms U↑↑n̂l	


2 /2=U↑↑n̂l	
 /2 which are
canceled out by redefining the d-energy levels as �l

0−U↑↑ /2.
For the calculation of the canonical partition function Q, the
quadratic terms in Eq. �4� are linearized by means of a two-
field Hubbard-Stratonovich transformation within the static
approximation. Thus, a charge field l and an exchange field
�l are introduced at each cluster site l, which describe the
finite-temperature fluctuations of the d-electron energy levels
and local exchange splittings, respectively. Using the nota-

tion �� = ��1 , . . . ,�N� and � = �1 , . . . ,N�, Q is given by

Q �� d� d�� exp�− �F����,� �� , �5�

where the free energy F� associated to the exchange fields ��

and � is given by

F����,� � =
1

2�
l
	Ul

2 +
J

2
�l

2
 −
1

�
ln�Tr�exp�− �Ĥ���� .

�6�

The effective Hamiltonian

Ĥ� = �
l,	,


�l
� n̂l	
 + �
l�k

	,�,


tlk
	�ĉl	


† ĉk�
 �7�

describes the dynamics of the d electrons as if they were
independent particles moving in a random alloy with energy
levels �l
� given by

�l
� = �l
0 + Uil − 


J

2
�l. �8�

The thermodynamic properties of the system are obtained as
a statistical average over all possible distributions of the en-
ergy levels �l
� throughout the cluster. The approach is known
as the static approximation, which is exact in the atomic limit

�tlm
	�=0, ∀ l�m� where no fluctuations are present, and in the

noninteracting limit �U

�=0�.
For T→0 the dominating field configuration ���0 ,� 0� cor-

responds to the saddle point in the free energy F���� ,� �. This
is determined from the self-consistent equations,

� �F�

��l
�

0
=

J

2
��l

0 − 2Ŝlz��� = 0, �9�

and

� �F�

�l
�

0
= U�l

0 + iN̂l�� = 0, �10�

where ¯�� indicates average with respect to the single-
particle Hamiltonian H�. Replacing Eqs. �9� and �10� in Eq.
�8� yields the known mean-field approximation to the energy
levels �l
� .19 The present approach provides therefore a
proper finite-temperature extension of the self-consistent
tight-binding theory developed in Ref. 19 for the ground
state.41

In this work we are interested in the temperature depen-
dence of the magnetic properties which are dominated by the
low lying spin fluctuations. Moreover, J�U, which implies
that the energy involved in local charge fluctuations is much
larger than the spin-fluctuation energies. Therefore, it is rea-
sonable to neglect the thermal fluctuations of the charge

fields l. For each exchange-field configuration ��, we set l

equal to the saddle point of F���� ,� � which is given by īl

=�l= N̂l��. Physically, this means that the charge distribution

�l= N̂l�� is calculated self-consistently for each exchange-

field configuration ��. Since the �l are implicit functions of ��,
one may write

Q �� d�� exp�− �F������ , �11�

where the free energy,

F����� = −
1

2�
l
	U�l

2 −
J

2
�l

2
 −
1

�
ln�Tr�exp�− �Ĥ���� ,

�12�

associated to �� depends only on the exchange variables �l
that describe the relevant fluctuations of the spin degrees of

freedom. Notice that F����� in Eqs. �11� and �12� is actually a

shorthand for F���� ,�̄ ����� where �̄ ���� refers to the saddle-

point value of � for the exchange configuration ��. The inte-

grand in Eq. �11� is proportional to the probability P����
= �exp�−�F������� /Q of the exchange-field configuration ��.

The thermodynamic properties are obtained by averaging

over all possible �� with exp�−�F������ as weighting factor.

For example, the local spin magnetization ml=2Ŝlz� at atom
l is given by
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ml�T� =
2

Q
� d�� exp��

2 �
l
	U�l

2 −
J

2
�l

2
�Tr�Ŝl
z exp�− �Ĥ��� ,

�13�

=
2

Q
� d��Ŝlz��e−�F�����, �14�

where Ŝlz�� is the average spin moment at atom l according

to the effective single-particle Hamiltonian Ĥ�, which de-

pends on the fluctuating ��. Taking into account that

�F/��l =
J

2
��l − 2Ŝlz��� , �15�

one may rewrite Eq. �14� as

ml�T� =
1

Q
� d���le

−�F�����. �16�

Thus, the local magnetization at atom l is equal to the aver-
age of the exchange field at the same atom. Equation �16�
justifies the intuitive though not quite rigorous association

between the fluctuations of the local moment 2Ŝlz� at atom l
and those of the exchange field �l. Notice that in Eqs. �14�
and �16� the restriction �l�l�0 or positive total cluster mo-

ment �lŜlz� ��0, must be enforced in order to avoid trivially
vanishing results for the average magnetization due to time-
inversion symmetry. This applies to any finite-system calcu-
lation and corresponds to the experimental situation where
the cluster moment is aligned along an external magnetic
field. We therefore compute the local magnetizations from

ml�T� =
1

Q
� d�� sgn	�

l

�l
�le
−�F�����. �17�

The cluster magnetization per atom m̄N is determined by av-

eraging the z component of the total spin operator Ŝz=�lŜlz

under the constraint Ŝz���0. This is given by

m̄N�T� =
2

N
�Ŝz�� =

1

N
�

l

ml�T� , �18�

which corresponds to the cluster average of the local magne-
tizations ml. The previous definitions of local and average
magnetizations are equivalent to the constraint of positive
magnetization used in Monte Carlo simulations of phenom-
enological spin models such as the Ising model.43 In this way
the local magnetizations ml�T� can be determined for differ-
ent local environments in analogy to the layer by layer mag-
netizations in thin films.

An alternative definition of the average magnetic moment
per atom is provided by

�̄N�T� =
2

N
�Ŝz

2� , �19�

where

Ŝz
2� =

1

Q
� d��Ŝz

2��e−�F����� �20�

denotes the average of the square total spin. Using Eq. �15�
one can express Ŝz

2� in terms of the exchange-field averages
as32

4Ŝz
2� = −

2N

�J
+

1

Q
� d���2e−�F�����, �21�

where �2= ��l�l�2. The first term in Eq. �21� cancels the
trivial contribution to �2� that is present even if H� is inde-

pendent of ��. The magnetic order within the cluster and its
stability at finite T are characterized by the correlation func-
tions,

�lk = 4ŜlzŜkz� = −
2

�J
�lk +

1

Q
� d���l�ke

−�F�����, �22�

between the magnetic moments at atoms l and k. Notice that

4Ŝz
2�=�lk�lk. Positive �negative� values of �lk for l�k indi-

cate ferromagnetic �antiferromagnetic� correlations which
tend to enhance �reduce� the total magnetization per atom
�̄N�T�. The diagonal elements of �lk are related to the local
magnetic moments,

�l = 2�Ŝlz
2 � = ��ll, �23�

at atom l. It should be noted that temperature fluctuations in
itinerant-electron magnets not only affect the spin-spin cor-
relation functions, for example, by destroying the ground-
state FM order in FeN, but can also modify the size of the
local spin polarizations �l. This contrast with localized mag-
netism where spin and charge degree of freedoms are well
separated. In the applications it is interesting to investigate
the different temperature scales yielding changes of the vari-
ous �lk, in order to infer which local moments fluctuate more
or less easily and which are the moments that trigger the
breakdown of the cluster magnetic order.

B. Numerical simulations

The calculation of the partition function and derived mag-
netic properties involves two averages. The first one con-
cerns the electronic degree of freedom of the effective

single-particle Hamiltonian Ĥ�, and the second one the func-
tional integration over the spin degrees of freedom. In prac-

tice the averages over Ĥ� are performed by using for sim-

plicity a grand-canonical ensemble with a ��-dependent
chemical potential that yields the appropriate fixed total

number of electron electrons for all ��. The average occupa-

tion of the eigenstates of Ĥ� are then given by the Fermi
function f���. This is expected to be a good approximation,
since the excitations dominating the temperature dependence
of the magnetic order in TMs are the low-energy spin fluc-
tuations rather than the higher single-particle Stoner excita-
tions. In addition, we have checked that using a constant
chemical potential does not affect the results significantly.
The charge distribution and local spin moment for each
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exchange-field configuration are then obtained straightfor-
wardly by integrating the local densities of states �DOS�
�l	
��� of Ĥ� as

�l = N̂l�� = �
−�

+�

�
	


�l	
���f���d� , �24�

and

Ŝlz�� =
1

2
�

−�

+�

�
	



�l	
���f���d� . �25�

In the present work the local DOS is computed by using
Haydock-Heine-Kelly’s recursion method.44

In order to determine the relevant magnetic properties of
an N-atom cluster we need to evaluate integrals over N ex-
change fields where each point involves an electronic calcu-
lation that is almost as involved as a ground-state one. The
integration procedure must be therefore efficient and unbi-
ased. In this context, the simple Metropolis Monte Carlo
method45 has proven to be particularly useful. However, the
simple MC simulation schema very often fails or needs far
too long ergodicity times, if the energy landscape is complex
showing numerous local minima separated by large barriers.

As shown in Ref. 25, this is the case for the free energy F�����
of Fe clusters, since the magnetic states of positive and nega-
tive fields are in general separated by significant barriers.
Several improvements have been proposed to overcome this
difficulty.46–51 The ergodicity times can be drastically re-
duced if several simulations are performed at different tem-
peratures in a parallel way, enabling the exchange of con-
figurations between the various temperatures.51 In the
exchange MC method one considers many replicas of the
system of interest, each of which is simulated simultaneously
and independently at a different temperature using a conven-
tional Metropolis MC algorithm. In addition to the usual lo-

cal updates of the spin configurations ��, one allows the ex-
change of configurations at nearby temperatures according to
a Metropolis criterion taking into account the involved en-
ergy difference between the configurations. This introduces
additional nonlocal Markov steps by which a simulation at
low temperature can escape from local minima. More details
of this method, known as parallel tempering or exchange
MC, may be found in Ref. 51. In our calculations, the ex-
changes of magnetic states between nearby temperatures are
attempted once every five parallel cycles. A set of 16 tem-
peratures is considered that yields an acceptance rate of
about 0.75 for the exchange of magnetic states.

Before presenting the results for the temperature depen-
dent magnetic properties, and in order to estimate the num-
ber of MC cycles needed for achieving reliable averages, it is
interesting to discuss the quality of the statistical simulations
by taking Fe6 and Fe15 clusters as representative examples.
The autocorrelation function,

q��,Tm� =
1

N
�

l

�i�0��i����t,m, �26�

is a quantity that measures the relaxation dynamics of MC
simulations. More specifically, �i�0��i����t,m measures the

time correlation of the �i exchange field at the MC step � and
temperature Tm with respect to the set of initial values
��i�0��. In Fig. 1 we show q�� ,�m� for Fe6 and Fe15 clusters
and for three different representative temperatures. T1 and
T16 refer to the lowest and highest temperatures considered
in the simulation. Notice that for large temperatures �T
�1000 K� q decays very fast vanishing for all the consid-
ered clusters at ��300. However, for lower temperatures q
behaves in a different way depending on the cluster. For
instance, for Fe6 at T�1000 we find that q���500� is far
from being negligible �see Fig. 1�a��. In the case of Fe15, and
for the same range of the temperatures, q eventually vanishes
at ��1700. Only for the lowest temperature T1=300 K we
observe some relatively small oscillations below ��2000. In
practice q vanishes for about ��2000 cycles for all the con-
sidered clusters. Therefore, the number of MC cycles used in
this work, namely, ��20 000, is large enough to ensure er-
godicity in the simulations keeping the computer time within
reasonable limits.

III. RESULTS

In this section we present and discuss results for the tem-
perature dependence of the average magnetizations, �̄N�T�
and m̄N�T�, local magnetic moments �l, and pair-correlation
functions �lk for FeN clusters having N�24 atoms. The pa-
rameters used for the calculations are the same as in Ref. 19,
namely, bulk d-band width W=6.0 eV, direct Coulomb inte-
gral U=6.0 eV, and exchange integral J=0.73 eV, which
yields the experimental bulk magnetization at T=0, as well

0.0

0.5

1.0

q(
τ,

T
m

)

(a)
T

1
=300K

T
7
=739K

T
16

=5500K

0 500 1000 1500 2000τ
0.0

0.5

1.0

q(
τ,

T
m

)

(b)
T

1
=300K

T
7
=957K

T
16

=3500K

FIG. 1. �Color online� Autocorrelation function q�� ,Tm� as a
function of the Monte Carlo step � for different temperatures Tm.
Results are given for �a� Fe6 and �b� Fe15 clusters and for represen-
tative simulations temperatures.
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as the well-known enhancement of the ground-state moments
as the size is reduced. In Fig. 2 we show the cluster struc-
tures considered for the calculations. For simplicity, the NN
interatomic distance of bulk bcc Fe is assumed. Bond-length
relaxation effects are quantified in Sec. III C for some repre-
sentative clusters.

A. Average magnetization

In the following we present the results for the average
magnetization obtained from Eqs. �18� and �19�. It is inter-
esting to compare these two alternative ways since in the
former the average corresponds to the experimental situation
in which the cluster moment is aligned by an external mag-
netic field and the later provides the actual contributions of
the local magnetic order to the average magnetization.

The results for temperature dependence of the average
magnetization �̄N given by Eq. �19� are shown in Fig. 3.
Among the general common features of all curves, we ob-
serve the low-temperature saturation of �̄N for small clusters
��̄N�T→0��3.0�B for N�6� and the enhancement of �̄N�0�
with respect to the bulk for N=15 and 24. In the other ex-
treme, at high temperatures �T�4000 K� �̄N is approxi-
mately constant as expected for a randomly disordered mag-
netic state. Notice that the high-temperature values are
somewhat smaller than �̄N�0� /�N, which would be the result
predicted by a simple localized Ising-type model.52 This re-
flects a moderate though significant reduction in the local
magnetic moments �l, which can be ascribed to the delocal-
ized character of the d states. Notice that the high-
temperature limit of �̄N, as well as of the local moments �l
to be discussed below, is essentially independent of the de-

tails of the electronic structure and of the cluster geometry. It
is mainly a statistical local effect. The temperature depen-
dence linking the low and high T limits is not universal, i.e.,
it depends strongly on the cluster geometry and on the details
of the single-particle spectrum. Remarkably, a strong struc-
tural dependence of �̄N�T� is found, even in situations where
the ground-state moments are saturated and therefore do not
depend significantly on structure �e.g., in small clusters�. The
differences in �̄N�T� are found to be very important in Fe3
and to lesser extent in Fe4 and Fe5 �see Fig. 3�. However,
notice that at high temperatures, in the disordered local-
moment regime, the differences in �̄N or m̄N among different
isomers disappear completely even in cases where the devia-
tions at low and intermediate temperatures are important
�e.g., Fe3 chain and triangle, or Fe5 bipyramid and trust�.
This occurs for T�2500–3000 K, where the pair-
correlation functions essentially vanish �see below�.

The stability of cluster ferromagnetism can be quantified
by the size-dependent temperature TC�N� corresponding to
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the inflection point in �̄N�T�. In the thermodynamic limit
TC�N� should converge to the bulk Curie temperature.53

However, the physics behind TC�N� in small clusters should
be different than in large nanoparticles and solids. In large
systems TC defines naturally the temperature above which
the long-range magnetic order disappears. Nevertheless, a
significant degree of short-range magnetic order �SRMO� is
observed for T�TC in the bulk and near surfaces of Fe, Co,
and Ni.30,54,55 Even for large 3d TM clusters �N=50–600�
there is clear experimental evidence for the existence of
SRMO above TC.4,36 The size of the SRMO domains near TC
has been estimated to be �=15–19 atoms.36 For clusters that
are smaller than the range of SRMO, it is no longer possible
to increase the entropy without destroying the energetically
favorable local magnetic correlations. Therefore, the cluster
Curie temperature in the limit of N�� should tend to a
higher temperature TSR�N� above which thermal fluctuations
destroy the short-range correlations between the local mag-
netic moments, for example, between NN �l. This is prob-
ably the reason for the relatively large values of TC�N� de-
rived from our calculations: TC�N��1500–2500 K except
for linear Fe3 �TC�3��750 K� and square bipyramid Fe6
�TC�6��750 K�.

Larger clusters such as Fe15 and Fe24 have their own spe-
cial interest since the present nonsaturated spin moments, in
contrast to the already discussed smaller ones. Moreover,
15–20 atoms is the typical size of a SRMO domain in Fe. For
Fe15 the average magnetic moment at very low temperatures
is �̄15�0�=2.75�B and �̄24�0�=2.25�B. These values are in
agreement with previous works.19,56 As T increases �̄N�T�
remains close to the ground-state magnetization up to T
�800–1000 K. Here it starts a rapid decrease, reaching the
disordered-local-moment limit for T�2500 K, where �̄N

� �̄N�0� /�N. The fact that at these temperatures �̄N is close
to the average of randomly oriented local moments indicates
that these clusters are completely disordered without any sig-
nificant SRMO being left �N=15 and 24 at T�2500 K�.
This is in agreement with our previous discussion suggesting
that TC�N��TSR�N� for N��, and is confirmed by more
detailed calculations of the correlation functions �lk. From
the inflection point of �̄N�T� we obtain TC�1500 K which
is not far from the bulk value TC

CPA�bulk�=1600 K calcu-
lated using the same model and the coherent-potential ap-
proximation �CPA�.31 Interestingly, in the case of Fe24, we
find a slight low-temperature increase of �̄24�T� with respect
to �̄24�0� �see Fig. 3�c��. This unusual behavior reflects
temperature-induced changes in the local electronic structure
corresponding to the occupations of higher-spin states. A
similar effect has been observed experimentally on large Co
clusters.4,14

It is interesting to compare the temperature dependence of
�̄N for the most compact and highly symmetric clusters �N
=2–5� since the coordination numbers increase here very
fast, almost linear with N. Remarkably, the calculations show
that as N increases, �̄N�T� decreases more rapidly with T �see
Fig. 3�. This means that at T�0 the ferromagnetic order
becomes comparatively less stable as N and the coordination
number z increase. This trend is strictly opposite to the pre-
dictions of simple spin models �for instance, the Ising
model�. In fact, if one would attempt to derive an effective

Ising or Heisenberg NN exchange coupling constant J by
fitting our electronic calculations, one would conclude that J
decreases rapidly with N or z �such as 1 /z or faster�. Obvi-
ously, this surprising behavior has to be ascribed to the itin-
erant character of the d states. As z increases the d-band
width increases and with it the relative importance of the
kinetic energy as compared to the local exchange energy.
This effect appears to be so strong in the case of small Fe
clusters that it overcomes the fact that with increasing z the
perturbation introduced by the fluctuations of an exchange
field �l affect a larger number of atoms and should thus imply
a higher excitation energy.

In Fig. 4 results are given for the average magnetization
per atom m̄N�T� as calculated from Eq. �18�. Comparing the
results with Fig. 3, one observes that both alternative ways of
calculating the average cluster moment yield qualitatively
similar magnetization curves in general. Results for larger
ferromagnetic clusters �e.g., Fe15 and Fe24� confirm this
trend. However, for linear Fe3 and square bipyramid Fe6, m̄N
decreases with temperature faster than �̄N. These differences
are probably due to the fact that these clusters develop sig-
nificant AF-like correlations between second NN moments,
as it will be discussed below. The two averages �̄N and m̄N
being qualitatively similar, one may pursue the analysis fur-
ther from a local perspective by investigating the pair-
correlation functions �lk�T�, where �̄N

2 =�lk�lk /N, and/or the
local magnetizations ml�T�, where m̄N=�lml /N.

B. Local moments and spin correlations

The temperature dependence of the magnetic order within
the cluster can be analyzed in more detail by considering the
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spin-correlation functions �lk �see Eq. �22��. Comparing the

various local moments �l=��ll and interatomic �lk allows us
to understand the behavior of �̄N=��lk�lk from a local per-
spective and at the same time gain a useful insight on the
environment dependence of finite-temperature cluster mag-
netism. Figures 5 and 6 show our results for the pair-
correlation functions and for the square of the local magnetic
moments �l

2=�ll of FeN clusters. The suffixes of �lk corre-
spond to different nonequivalent atoms or pairs of atoms as
labeled in Fig. 2. An important feature common to all con-

sidered clusters is the remarkable stability of the local mo-
ments �l

2 at finite temperatures, which are reduced by at
most 20%–30% with respect to the ground state, even at the
highest considered temperatures. Similar results are found in
thin films and bulk Fe.31 This simplifies the analysis of the
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temperature dependent properties, at least to some extent,
since in first approximation we may consider that the fluctu-
ating moments have a fixed size. Thus, the magnetic mo-
ments preserve a local character despite the fact that the d
electrons are delocalized. This is physically quite plausible,
since the formation of local moments involves an energy of
the order of J�l

2 /4, that is much larger than the typical spin-
fluctuation energies. In addition, the narrowing of the d band
in clusters reduces the kinetic or band energy and tends to
enhance the localized or directional character of spin
fluctuations.19 The only exception we found to these trends is
the moment at the center of a bcc-like Fe15 cluster. As will be
discussed below, this is related to the fact that the T=0 local
moments are not saturated at this atom.

The temperature dependence of �12 for Fe2 and Fe3 �tri-
angle� follows the behavior of the corresponding �̄N�T�
curves as expected for highly symmetric clusters having lo-
cal moments �l that depend weakly on temperature. One
observes that the ground-state ferromagnetic coupling is al-
most fully preserved up to a relatively high temperature T
�1500 K. Above this temperature, �12 decreases monotoni-
cally, remaining positive and approaching zero ��12��11� at
approximately T�4000 K. For T�4000 K the local mo-
ments fluctuate in an uncorrelated way and �̄N��l /�N. As a
first example of the role of cluster structure it is interesting to
compare the triangle with the linear chain. In linear Fe3 the
ground state is ferromagnetic with saturated moments �l�0�
�3�B and therefore the first NN and second NN correlation
functions at T=0 are �12�0���13�0��9. However, in this
case �12 and �13 decrease very rapidly, almost linearly in T
already at very low temperatures �see Fig. 5�c��. Moreover,
�13 changes sign at T�1500 K showing weak antiferromag-
netic correlations between second NNs ��13�0�. These an-
tiferromagnetic correlations together with the fast decrease in
the ferromagnetic NN �12 are responsible for the rapid de-
crease in �̄N�T� with increasing T. It is interesting to analyze
the origin of the second NN antiferromagnetic correlations,
since they are also found in other clusters �N=4–6� and
since they provide some insight into the nature of the domi-
nant spin fluctuations. First of all, one should notice that a
negative �13 cannot be understood in terms of uncorrelated
local spin fluctuations or unconditional probabilities p+�i�
and p−�i�=1− p+�i� of having up and down moments at dif-
ferent sites i. In fact, in this case one would have, using for
simplicity a spin-1/2 Ising model, �13=1−4p+

2�1− p+��0 for
all p+. Intuitively, in absence of any special correlations, it is
clear that positive �12 and �23 should imply a positive �13.
However, if one considers the correlated probabilities p1
= p+++, p2= p++−= p−++, and p3= p+−+ of all different configu-
rations on a linear trimer ��i�i�0�, it is easy to show that
�13=1−4p2. This is negative provided that p3 does not in-
crease significantly when p1 decreases with increasing
T��13�0⇔ p2� �p1+ p3� /2�. In other words, �13�0 indi-
cates that the dominant spin fluctuations in the linear trimer
take place at the extremes of the chain, while spin flips at the
central site are much less frequent. As we shall see, a similar
analysis applies to larger clusters where the fluctuations at
the lowest coordinated sites also dominate over those at the
highest coordinated ones �e.g., the rhombus Fe4, trust Fe5
and square bipyramid Fe6�.

The pair-correlation functions of the Fe4 clusters having
rhombohedral and tetrahedral geometry are shown in Figs.
5�c� and 5�d�. Qualitatively, the tetrahedron resembles the
triangle, while the rhombus shows the same main features as
the linear trimer with ferromagnetic coupling between first
NNs and antiferromagnetic coupling between second NNs
above a certain T �see Fig. 5�e� for �13 and �24, respectively�.
As before, the antiferromagnetic correlations result in a
faster decrease in the average magnetization with increasing
temperature.

Figure 6 shows the pair-correlation functions of FeN for
5�N�15 �see also Fig. 2�. For Fe5 we always find ferro-
magneticlike correlations between NNs ��ij �0�, both for the
bipyramid �Fig. 6�a�� as for the trust �Fig. 6�b��. In contrast,
the second NNs correlations are antiferromagneticlike above
a temperature T�1500–2500 K, depending on the structure
and pair of sites. This can be qualitatively understood by
analogy with the linear trimer as an indication that the spin
fluctuations at the atoms lying at the extremes of the cluster
�e.g., i=4 and j=5 in the bipyramid, and i=1 and j=3 or 5 in
the trust� are much more frequent than the fluctuations of the
inner atoms. Notice that negative �ij are only possible when
the average magnetic moments have significantly decreased.
Comparing the various �ij of the two considered Fe5 isomers,
one first of all notes the larger dispersion of the results for
the trust, a logical consequence of its lower symmetry. More-
over, one observes that the correlations in the trust decrease
in general more rapidly than in the bipyramid. This is con-
sistent with the idea that spin fluctuations are more frequent
in weakly coordinated environments. However, for some par-
ticular pairs of atoms in the trust �e.g., i=1 and j=4� the FM
correlations are systematically stronger than for any pair of
atoms in the bipyramid. In the case of Fe6 the pair-
correlation functions decrease much faster with increasing T
than in any of the previously discussed clusters �see Fig.
6�c��. Moreover, the AF correlations between second NNs
are particularly strong here ��14 and �56�0�. They set in at
about T=700 K and vanish only above T=3000 K. In con-
trast, the FM-like correlations �12 and �15 are rather weak
and disappear above T=1000 K. The conjunction of these
effects explains the very rapid decrease in �̄N�T� and m̄N�T�
in this cluster �see Figs. 3 and 4�.

The characteristic behavior found in very small low-
symmetry clusters, i.e., FM correlations for first NNs and AF
correlations for second NNs above T�1500, no longer ap-
plies to Fe15. In this case all the correlation functions are
positive �see, in particular, �1,10 and �24 in Fig. 6�c��. Fur-
thermore, the correlation functions between the pairs involv-
ing the central atom i=1 ��12 and �1,10� as well as the central
local moment �1 show an unusual temperature dependence.
They start from rather small values at T=0, and then in-
crease with increasing T, as if they were driven by the still
strong FM correlations between all the other atoms in the
cluster �see Fig. 6�c��. A change in trend and a decrease of
�12 and �1,10 is only observed when the fluctuations are so
important that the correlations between the atoms i=2–15
start to decrease. This effect is most probably due to changes
in the local electronic structure with temperature. It suggests
that low-energy states with higher spin are occupied at T
�0. A similar behavior has been found in other clusters
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showing nonsaturated ground-state moments including fully
correlated exact-diagonalization studies of Hubbard
clusters.57

C. Bond-length relaxation effects

The effects of structural relaxations on the magnetic prop-
erties of FeN clusters have been investigated by varying the
NN distance r. In this way, the interplay between kinetic and
Coulomb energies can also be explored, since r controls the
d-band width and the energy associated to electron delocal-
ization through the distance dependence of the hopping inte-
grals tij.

58 In this paper, we apply the relation tij �r−5 as
derived in Ref. 58. As a result the effective coupling con-
stants between the local moments can be manipulated. In
Fig. 7 the average magnetization curves �̄N�T� of Fe5, Fe6,
and Fe15 are given for different values of r. Before discuss-

ing the temperature dependence of �̄N�T�, a few comments
on the ground-state moments �̄N�0� are due. For large inter-
atomic distances one obtains saturated �̄N�0�=3�B, as ex-
pected for a very narrow d-band width. As r decreases, �̄N�0�
remains first saturated until r lies below a critical value that
depends on size and structure19 �see Fig. 7�. Finally, for very
short r the ground-state ferromagnetic order breaks down
and �̄N�0�→0. Notice that the changes in �̄N�0� with r are
very abrupt in small clusters due to the extreme discreteness
of the single-particle spectrum.

At finite temperatures one observes very different behav-
iors depending on the values of r. Let us first consider large
distances where the ground-state moments are saturated. For
the considered values of r �r /rb=1.00–1.05� �̄N�T� de-
creases faster with increasing T when the NN distances are
shorter. This is consistent with the trends found in smaller
compact clusters, where a larger size or higher coordination
number implies a reduction in the cluster Curie temperature.
In this range of NN distances magnetism is more stable when
the delocalization or band energy is smaller �larger r /rb�.
Notice that all the curves start at the same saturated magne-
tization per atom �̄N�0�=3�B. Therefore, the higher TC�N�
cannot be ascribed to an enhancement of the local moments.
If one attempts to interpret these results in the framework of
an Ising or Heisenberg model, one must conclude that the
effective exchange coupling between local moments Jlk in-
creases with increasing NN distance. Of course, this trend
cannot hold in the limit of very large r. One actually ob-
serves that the effective Jlk goes over a maximum and then
decreases if r is further increased. A similar distance depen-
dence of TC has been found in thin Fe films.31

A more interesting temperature dependence of �̄N�T� is
found at smaller NN distances, where the T=0 moments are
not saturated and eventually almost vanish for very small r
due to strong d-band broadening. Here, we observe a remark-
able enhancement of �̄N�T� with increasing T that indicates,
as already mentioned before, the presence of higher-spin
states that are populated at finite temperatures. At the same
time the local magnetic moments �l also increase with T. A
similar effect is most probably at the origin of the finite
temperature increase in the magnetic moments observed in
beam experiments on large Co clusters.4,14 Notice, moreover,
that the simple relation for randomly orientated spins, �̄N�T
�TC�= �̄N�0� /�N, is no longer valid in this range of NN
distances. These results illustrate very clearly the important
interplay of spin fluctuations and electronic structure and the
subtle competition between localized and itinerant aspects of
d-electron magnetism.59

IV. DISCUSSION

The finite-temperature magnetic properties of FeN clusters
have been determined in the framework of a spin-fluctuation
functional-integral theory and a parallel tempering Monte
Carlo simulation approach. In this way both the cluster spe-
cific electronic structure and the collective fluctuations of the
magnetic degrees of freedom at all atoms are treated on the
same footing. This is an important improvement with respect
to single-site approximations,25,31–33 which allows us to take
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into account and quantify the degree of SRMO in clusters.
The study has revealed a variety of new interesting behaviors
concerning the dependence of the finite-temperature mag-
netic properties of clusters as a function of size, structure,
and interatomic distances. A remarkable nonmonotonous
temperature dependence of the average and local magnetiza-
tions has been found. The role of the local atomic environ-
ment has been studied by means of the interatomic spin-
correlation functions and by varying the NN bond lengths.
We have shown that simple Heisenberg or Ising models are
not applicable straightforwardly to Fe clusters, since the
electronic structure contributions and the itinerant character
of the d electrons are crucial for determining the magnetic
behavior at finite temperatures.

A few comments should be made concerning the possible
role of fluctuations of the cluster structure that can be in-
duced by temperature and that could coexist with spin fluc-
tuations of electronic origin considered in the paper. Previous
exact-diagonalization studies on the single band Hubbard
model have shown that the isomerization energies of mag-
netic clusters are often comparable to the spin excitation
energies.57 Although we expect the stability of ground-state
structures to be higher in realistic d-band calculations, it is
also true that the contributions of structural fluctuations to
the temperature dependence cannot be excluded a priori. The
effect could be particularly significant in weak unsaturated
ferromagnets such as FeN, which magnetic moments are
known to be very sensitive to structure already for T=0.19

Moreover, as shown in this paper, the stability of ferromag-
netism at finite T also depends on cluster geometry. There-
fore, the population of low-energy isomers can modify
�̄N�T�, even if the T=0 moments of the excited isomers are
nearly the same as for the optimal geometry. In strong ferro-
magnets the excited isomers are usually quite disordered
magnetically when one reaches the temperatures at which
they are significantly populated. In this case their contribu-
tion to the ensemble average leads to a more rapid decrease
in �̄N�T�. However, in systems with unsaturated moments it
is also conceivable to find excited isomers for which ferro-

magnetism is stronger and comparatively more stable. In
such a situation an increase in �̄N�T� is possible. More de-
tailed investigations taking into account electronic spin fluc-
tuations and structural rearrangement on the same footing are
certainly most interesting.

The results discussed in this paper encourage further the-
oretical developments. The present functional-integral ap-
proach to spin fluctuations and the local method of calcula-
tions of the electronic structure are well suited to investigate
more complex systems with reduced symmetry, such as clus-
ters and nanostructures on surfaces or substrate effects on
thin films. In addition, a number of methodological improve-
ments seem worthwhile. The spin-rotational symmetry of the
effective Hamiltonian H� could be restored by introducing

vector exchange fields ��i at each atom i. Thus, noncollinear
magnetic order and transversal fluctuations of the exchange
fields could be taken into account. These are likely to affect
the magnetization curves and probably reduce the calculated
values of TC. As already discussed, incorporating structural
fluctuations in the statistical average process is also desir-
able. Another interesting extension concerns the effects of
the interactions at interfaces with nonmagnetic substrates, in
order to achieve a more realistic comparison with experi-
ments on clusters deposited on surfaces. Last but not least,
the model can be readily extended to take into account spin-
orbit interactions,23 and dipole-dipole interactions that are
responsible for magnetic anisotropy and for spin reorienta-
tion transitions.
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